EFFECT OF PARTICLE SIZE ON H-ATOM SPECTRUM (DIRAC EQ.)

ABSTRACT

The charge of the electron and the proton is assumed to be distributed in space. The potential energy of a specific charge distribution is determined. Perturbation theory is used to calculate the shift in the 1S energy level of the hydrogen atom due to the proton and electron size.

I. SOLUTION TO THE DIRAC EQUATION

The potential energy of a point proton and a point electron at rest is $V(r) = -e^2/r$. When this potential energy is put into the Dirac equation, the wave function for the 1S energy level is ¹

$$\psi_{n,\ell,j}(\rho,\theta,\phi) = \psi_{1,0,1/2}(\rho,\theta,\phi) = \begin{pmatrix} g(\rho)Y_{00}(\theta,\phi) \\ 0 \\ -if(\rho)\sqrt{\frac{1}{3}}Y_{10}(\theta,\phi) \\ -if(\rho)\sqrt{\frac{2}{3}}Y_{11}(\theta,\phi) \end{pmatrix}$$
(1)

Date: December 10, 2015.

2 EFFECT OF PARTICLE SIZE ON H-ATOM SPECTRUM (DIRAC EQ.) where $Y_{\ell,m}$ is a spherical harmonic 2 , $\rho = 2r/a_0$, a_0 is the Bohr radius,

$$g(\rho) = \left(\frac{2}{a_0}\right)^{3/2} \sqrt{\frac{1+\epsilon}{2\Gamma(2\gamma+1)}} \exp\left(-\rho/2\right) \rho^{\gamma-1}, \qquad (2)$$

 $f(\rho)=-\sqrt{1-\epsilon}\,g(\rho)/\sqrt{1+\epsilon},\ \gamma=\sqrt{1-\alpha^2},$ the fine structure constant $\alpha=e^2/\hbar\,c,\ \epsilon=E/mc^2,$ and Γ refers to the gamma function.

II. THE POTENTIAL ENERGY

Take the proton charge to be uniformly distributed on a spherical shell of radius r_0 in its rest frame. The potential energy of this proton and a point electron is

$$V(r) = \frac{-e^2}{r_0}H(r_0 - r) + \frac{-e^2}{r}H(r - r_0)$$
(3)

where H() is the unit step function. Subtract $-e^2/r$ from V(r) to get the perturbing potential energy, $\delta V(r)$, due to the proton size. The result is

$$\delta V(r) = \frac{-e^2}{r_0} H(r_0 - r) + \frac{+e^2}{r} H(r_0 - r).$$
(4)

III. SHIFT OF THE 1S ENERGY LEVEL DUE TO PROTON SIZE

The energy shift of the 1S energy level due to proton size is

$$\delta E_1 = \int \psi_{1,0,1/2}^{\dagger}(r,\theta,\phi) \delta V(r) \psi_{1,0,1/2}(r,\theta,\phi) d^3 r.$$
 (5)

Since the wave function was given in terms of ρ and not r, rewrite the above equation as

$$\delta E_1 = \int \psi_{1,0,1/2}^{\dagger}(\rho,\theta,\phi) \delta V(\rho) \psi_{1,0,1/2}(\rho,\theta,\phi) \left(\frac{a_0}{2}\right)^3 d^3 \rho \tag{6}$$

where $d^3 \rho = \rho^2 \sin(\theta) d\theta d\phi d\rho = \rho^2 d\rho d\Omega$, $\rho_0 = 2r_0/a_0$ and

$$\delta V(\rho) = \frac{2e^2}{a_0} \left(\frac{-1}{\rho_0} + \frac{1}{\rho} \right) H(\rho_0 - \rho) \,. \tag{7}$$

Note that

$$\int \psi_{1,0,1/2}^{\dagger}(\rho,\theta,\phi)\psi_{1,0,1/2}(\rho,\theta,\phi)\sin(\theta)d\theta\,d\phi = \int [g(\rho)^{2}Y_{00}^{2}(\theta,\phi) + f^{2}(\rho)\left(\frac{1}{3}Y_{10}^{2}(\theta,\phi) + \frac{2}{3}Y_{11}^{*}(\theta,\phi)Y_{11}(\theta,\phi)\right)]d\Omega = g(\rho)^{2}\frac{2}{1-\epsilon}$$
(8)

since the spherical harmonics are normalized. So

$$\delta E_1 = \frac{2e^2}{a_0 \Gamma(2\gamma + 1)} \int_0^{\rho_0} \exp(-\rho) \rho^{2\gamma} \left(\frac{-1}{\rho_0} + \frac{1}{\rho}\right) d\rho.$$
 (9)

Taylor expand the exponential dropping terms of the order ρ squared and higher. Note $\rho_0=2r_0/a_0<<1$. Then

$$\delta E_1 = \frac{2e^2}{a_0 \Gamma(2\gamma + 1)} \left[-\int_0^{\rho_0} (\rho^{2\gamma} - \rho^{2\gamma + 1}) \frac{d\rho}{\rho_0} + \int_0^{\rho_0} \rho^{2\gamma - 1} - \rho^{2\gamma}) d\rho \right]. \quad (10)$$

After integration and a little algebra

$$\delta E_1 = \frac{2e^2}{a_0 \Gamma(2\gamma + 1)} \left[+ \frac{\rho^{2\gamma}}{2\gamma(2\gamma + 1)} - \frac{\rho_0^{2\gamma + 1}}{(2\gamma + 1)(2\gamma + 2)} \right]. \tag{11}$$

4 EFFECT OF PARTICLE SIZE ON H-ATOM SPECTRUM (DIRAC EQ.) Substitute $\rho_0=2r_0/a_0,$ and get

$$\delta E_1 = \frac{2e^2}{a_0 \Gamma(2\gamma + 1)} \left(\frac{2r_0}{a_0}\right)^{2\gamma} \frac{1}{2\gamma(2\gamma + 1)} \left[1 - \frac{2r_0}{a_0} \frac{\gamma}{\gamma + 1}\right],\tag{12}$$

where $\gamma = \sqrt{1 - \alpha^2} \approx 1$ since $\alpha \approx \frac{1}{137}$. Set $\gamma = 1$, and find

$$\delta E_1 \approx \frac{e^2}{a_0} \frac{2r_0^2}{3a_0^2} \left(1 - \frac{r_0}{a_0} \right). \tag{13}$$

IV. ELECTRON SIZE INCLUDED IN THE POTENTIAL ENERGY

Again take the proton charge to be uniformly distributed on a spherical shell of radius r_0 in the proton rest frame, and take the electron charge to be uniformly distributed on a spherical shell of radius a in the electron rest frame. The potential energy of the proton and electron is ³

$$V_{e}(r) = \frac{-e^{2}}{r_{0}}H(r_{0}-a-r) - \frac{-e^{2}}{r}H(r-r_{0}-a) + [V_{i}(r)+V_{o}(r)][H(r+a-r_{0})-H(r-r_{0}-a)]$$
(14)

where

$$V_i(r) = \frac{-e^2}{2r_0} \left(1 + \frac{r_0^2 - a^2 - r^2}{2ra} \right), \tag{15}$$

and

$$V_o(r) = \frac{-e^2}{2ra} (r + a - r_0). {16}$$

Subtract $-e^2/r$ from $V_e(r)$ to get the perturbing potential energy

$$\delta V_e(r) = \frac{-e^2}{r_0} H(r_0 - a - r) + \frac{+e^2}{r} H(r_0 + a - r) + [V_i(r) + V_o(r)] [H(r + a - r_0) - H(r - r_0 - a)].$$
(17)

Express $\delta V_e(r)$ in terms of $\rho = 2r/a_0$, $\rho_0 = 2r_0/a_0$, and $\bar{a} = 2a/a_0$, and find

$$\delta V_e(\rho) = \frac{-2e^2}{a_0\rho_0} H(\rho_0 - \bar{a} - \rho) + \frac{2e^2}{a_0\rho} H(\rho_0 + \bar{a} - \rho) + [V_i(\rho) + V_o(\rho)][H(\rho + \bar{a} - \rho_0) - H(\rho - \rho_0 - \bar{a})]$$
(18)

where

$$V_i(\rho) = \frac{-2e^2}{2\rho_0 a_0} \left(1 + \frac{\rho_0^2 - \bar{a}^2 - \rho^2}{2\rho a} \right),\tag{19}$$

and

$$V_o(\rho) = \frac{-2e^2}{2\rho a_0 \bar{a}} (\rho + \bar{a} - \rho_0).$$
 (20)

Substitute $\delta V_e(\rho)$ into Eq. (6). The resulting energy shift of the 1S energy level is $\delta E_1' = \delta E_{11}' + \delta E_{12}' + \delta E_{13}'$ where

$$\delta E'_{11} = \frac{-2e^2}{a_0 \Gamma(2\gamma + 1)\rho_0} \int_0^{\rho_0 - \bar{a}} \exp(-\rho) \rho^{2\gamma} d\rho, \qquad (21)$$

$$\delta E'_{12} = \frac{2e^2}{a_0 \Gamma(2\gamma + 1)} \int_0^{\rho_0 + \bar{a}} \exp(-\rho) \rho^{2\gamma - 1} d\rho, \qquad (22)$$

and

$$\delta E'_{13} = \frac{1}{\Gamma(2\gamma + 1)} \int_{\rho_0 - \bar{a}}^{\rho_0 + \bar{a}} \exp(-\rho) \rho^{2\gamma} [V_i(\rho) + V_o(\rho)] d\rho.$$
 (23)

Taylor expand the exponential, and drop higher order terms in ρ .

Then

$$\delta E'_{11} = \frac{-2e^2}{a_0 \Gamma(2\gamma + 1)\rho_0} \int_0^{\rho_0 - \bar{a}} (\rho^{2\gamma} - \rho^{2\gamma + 1)} d\rho, \qquad (24)$$

$$\delta E'_{12} = \frac{2e^2}{a_0\Gamma(2\gamma+1)} \int_0^{\rho_0+\bar{a}} (\rho^{2\gamma-1} - \rho^{2\gamma}) d\rho, \qquad (25)$$

6 EFFECT OF PARTICLE SIZE ON H-ATOM SPECTRUM (DIRAC EQ.)

and

$$\delta E'_{13} = \frac{1}{\Gamma(2\gamma + 1)} \int_{\rho_0 - \bar{a}}^{\rho_0 + \bar{a}} (\rho^{2\gamma} - \rho^{2\gamma + 1}) [V_i(\rho) + V_o(\rho)] d\rho.$$
 (26)

After integration, $\delta E'_{11}$ can be put in the form

$$\delta E'_{11} = \frac{-2e^2}{a_0 \Gamma(2\gamma + 1)\rho_0} \left[\frac{\rho_0^{2\gamma + 1}}{2\gamma + 1} \left(1 - \frac{\bar{a}}{\rho_0} \right)^{2\gamma + 1} - \frac{\rho_0^{2\gamma + 2}}{2\gamma + 2} \left(1 - \frac{\bar{a}}{\rho_0} \right)^{2\gamma + 2} \right]. \tag{27}$$

Taylor expand the two terms in parentheses dropping higher order terms in \bar{a}/ρ_0 , and find

$$\delta E'_{11} = \frac{-2e^2}{a_0 \Gamma(2\gamma + 1)} \left[\rho_0^{2\gamma} \left(\frac{1}{2\gamma + 1} - \frac{\bar{a}}{\rho_0} + \frac{2\gamma \bar{a}^2}{2\rho_0^2} \right) - \rho_0^{2\gamma + 1} \left(\frac{1}{2\gamma + 2} - \frac{\bar{a}}{\rho_0} + (2\gamma + 1) \frac{\bar{a}^2}{2\rho_0^2} \right) \right]. \quad (28)$$

Similarly after integration,

$$\delta E'_{12} = \frac{-2e^2}{a_0 \Gamma(2\gamma + 1)} \left[\frac{\rho_0^{2\gamma}}{2\gamma} \left(1 - \frac{\bar{a}}{\rho_0} \right)^{2\gamma} - \frac{\rho_0^{2\gamma + 1}}{2\gamma + 1} \left(1 - \frac{\bar{a}}{\rho_0} \right)^{2\gamma + 1} \right]. \tag{29}$$

Again Taylor expand dropping higher powers of \bar{a}/ρ_0 , and find

$$\delta E_{12}' = \frac{+2e^2}{a_0 \Gamma(2\gamma + 1)} \left[\rho_0^{2\gamma} \left(\frac{1}{2\gamma} + \frac{\bar{a}}{\rho_0} + \frac{(2\gamma - 1)\bar{a}^2}{2\rho_0^2} \right) - \rho_0^{2\gamma + 1} \left(\frac{1}{2\gamma + 1} + \frac{\bar{a}}{\rho_0} + \frac{2\gamma\bar{a}^2}{2\rho_0^2} \right) \right]. \quad (30)$$

Note that $\delta E'_{11}$ and $\delta E'_{12}$ can be added to yield

$$\delta E'_{11} + \delta E'_{12} = \frac{+2e^2}{a_0 \Gamma(2\gamma + 1)} \left[\rho_0^{2\gamma} \left(\frac{1}{(2\gamma + 1)2\gamma} + \frac{2\bar{a}}{\rho_0} - \frac{\hat{a}^2}{2\rho_0^2} \right) \right]$$

$$\rho_0^{2\gamma + 1} \left(\frac{-1}{(2\gamma + 2)(2\gamma + 1)} - \frac{2\hat{a}}{\rho_0} + \frac{\bar{a}^2}{2\rho_0^2} \right) . \quad (31)$$

It is convenient to set $\gamma = 1$ now. Then

$$\delta E'_{11} + \delta E'_{12} = \frac{+2e^2}{a_0 2} \left[\rho_0^2 \left(\frac{1}{6} + \frac{2\bar{a}}{\rho_0} - \frac{\hat{a}^2}{2\rho_0^2} \right) + \rho_0^3 \left(\frac{-1}{12} - \frac{2\hat{a}}{\rho_0} + \frac{\bar{a}^2}{2\rho_0^2} \right) \right]. \tag{32}$$

Next substitute $\rho_0 = 2r_0/a_0$ and $\bar{a} = 2a/a_0$ in Eq. (32), and get

$$\delta E_{11}' + \delta E_{12}' = \frac{+e^2}{a_0} \left[\frac{2r_0^2}{3a_0^2} \left(1 - \frac{r_0}{a_0} \right) + \frac{8r_0a}{a_0^2} \left(1 - \frac{2r_0}{a_0} \right) - \frac{2a^2}{a_0^2} \left(1 - \frac{2r_0}{a_0} \right) \right]. \tag{33}$$

Finally substitute $V_i(\rho)$ and $V_o(\rho)$ in Eq. (26), and get

$$\delta E'_{13} = \frac{-2e^2}{a_0 \Gamma(2\gamma + 1)} \int_{\rho_0 - \bar{a}}^{\rho_0 + \bar{a}} \left[\rho^{2\gamma} - \rho^{2\gamma + 1} \right] \left[\frac{1}{2\rho_0} \left(1 + \frac{\rho^2 - \bar{a}^2 - \rho_0^2}{2\rho \bar{a}} \right) + \frac{\rho + \bar{a} - \rho_0}{2\rho \bar{a}} \right] d\rho .$$
(34)

To avoid a lot of algebra, $\delta E'_{13}$ will be approximated using the mean value theorem for integrals. Since ρ_0 is in the middle of the limits of integration, set $\rho = \rho_0$ in the integrand. Then

$$\delta E_{13}' = \frac{-2e^2 2\bar{a}}{a_0 \Gamma(2\gamma + 1)} (\rho_0^{2\gamma} - \rho_0^{2\gamma + 1}) \left(\frac{1}{2\rho_0}\right) \left[2 - \frac{\bar{a}}{2\rho_0}\right]. \tag{35}$$

Again set $\gamma = 1$, and find

$$\delta E_{13}' = \frac{-2e^2 2\bar{a}}{a_0 2!} \left[\rho_0 (1 - \rho_0) - \frac{\bar{a}}{4} (1 - \rho_0) \right]. \tag{36}$$

Substitute $\rho_0 = 2r_0/a_0$ and $\bar{a} = 2a/a_0$ in Eq. (36), and get

$$\delta E_{13}' = \frac{-e^2}{a_0} \left[\frac{8ar_0}{a_0^2} \left(1 - \frac{2r_0}{a_0} \right) - \frac{8a^2}{4a_0^2} \left(1 - \frac{2r_0}{a_0} \right) \right]. \tag{37}$$

Add the results, and find

$$\delta E_1' = \delta E_{11}' + \delta E_{12}' + \delta E_{13}' = \frac{e^2}{a_0} \frac{2r_0^2}{3a_0^2} \left(1 - \frac{r_0}{a_0}\right). \tag{38}$$

8 EFFECT OF PARTICLE SIZE ON H-ATOM SPECTRUM (DIRAC EQ.)
Terms like r_0a/a_0^2 and a^2/a_0^2 do not appear. Presumably the electron radius will appear as a^3/a_0^3 when more terms are kept in the Taylor expansion of the exponential. However a^3/a_0^3 is quite small.

ACKNOWLEDGEMENTS

I thank Ben for his many improvements to the paper.

References

- ¹ Hans A. Bethe and Edwin E. Salpeter, Quantum Mechanics of One and Two-Electron Atoms(Springer-Verlag, Berlin, 1957), p 69.
- ² Hans A. Bethe and Edwin E. Salpeter, Quantum Mechanics of One and Two-Electron Atoms(Springer-Verlag, Berlin, 1957), p 5.
- ³ http://www.electronformfactor.com/Effect of Electron and Proton Size On Spin-Orbit Coupling