
EFFECT OF PARTICLE SIZE ON HYPERFINE

STRUCTURE

ABSTRACT

In the usual calculation of the H-atom energy levels, the potential

energy of a point proton at rest and a point electron at rest is used

in the Schrodinger equation. In this paper, the potential energy is

modified by treating the electron and proton charges as extended

in space. The effect of electron and proton size on the hyperfine

structure of the 2S energy level is calculated.

I. EFFECT OF PROTON SIZE ON THE HYPERFINE STRUCTURE

The vector potential A(r) at a point r in space, which is due to

the magnetic moment m of a point proton at the origin is 1

A(r) = m × r

|r|3 (1)

in c.g.s. units where m = gp e I/(2M), gP is the gyromagnetic ratio

of the proton, e > 0 is the proton charge, I is the proton spin oper-

ator, and M is the proton mass. In naturalized units (used in this
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paper),

A(r) =
gp e

2M
I × r

4π|r|3 . (2)

If the proton magnetic moment is spread out in space, then

A(r) =
gp e

2M

∫

ρp(y)I× r′

4π|r′|3d
3y (3)

where e ρp(y) is the proton charge density, y is the vector from the

origin (center of the proton) to an element of the proton magnetic

moment, r′ is the vector from an element of the proton magnetic

moment to a field point, and r is the vector from the origin to the

field point. So r = y + r′, and

A(r) =
gp e

2M

∫

ρp(y)I×∇r

( −1

4π|r− y|
)

d3y (4)

The magnetic field at a point r is 2

B(r) = ∇r ×A(r) =
gp e

2M

∫

ρp(y)∇r ×
(

I ×∇r

( −1

4π|r− y|
))

d3y =

gp e

2M

∫

ρp(y)
[

−∇2
r

( I

4π|r− y|
)

+ I · ∇r

(

∇r
1

(4π|r− y|)
)]

d3y. (5)

The electron magnetic moment −e~σ/(2m) of a point electron

interacts with the above magnetic field, yielding the hamiltonion

H ′ = e~σ · B/(2m) where m is the electron mass, and ~σ is the elec-

tron spin operator. The shift of the 2S energy level is given by

∆E20 =
∫

ψ∗

200H
′ψ200 d

3r where ψ200(r, θ, φ) = R20(r)Y00(θ, φ),

the normalized spherical harmonic Y00(θ, φ) = 1/(4π)1/2, and

R20(r) = (2 − r/a0) exp (−r/(2a0))/(2a0)
3/2 where a0 is the Bohr
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radius.3 The term ∇r(∇r(1/(4π|r− y|) will contain linear terms of

the components of r and the components of y. These linear compo-

nents integrate to zero leading to ∇i∇j ⇒ 1/3 δij∇2 in the integral

for ∆E20. Note that ∇2
r(1/(|r− y|) = −4πδ3(r− y), so 2

∆E20 =
gp e

2

(2M2m)
~σ · I

∫

ρp(y)R2
20(r) Y

2
00

2

3
δ3(r− y)d3y d3r. (6)

For the purpose of illustration, consider the magnetic moment of the

proton distributed uniformly on a spherical shell of radius r0. Then

ρp(y) = δ(|y| − r0)/(4πr
2
0). In spherical coordinates, dr3 = r2drdΩ

where dΩ = sin (θ)dθdφ. Then

∆E20 =
gp e

2

6Mm
~σ · I

∫

δ(|r| − r0)

4πr2
0

R2
20(r) r

2 dr Y 2
00 dΩ =

gp e
2

6Mm
~σ · IR

2
20(r0)

4π
. (7)

Expand the exponential in R20(r0) in powers of r0/a0 << 1, and

approximate R2
20(r) by (4− 8r0/a0)/(2a0)

3. Then find

∆E20 =
2gp e

2

(3Mm)
~σ · I 1

4π(2a0)3
(1− 2r0

a0

) . (8)

II. EFFECT OF ELECTRON SIZE ON THE HYPERFINE STRUCTURE

In this section, both the proton and electron magnetic moments

will be assumed to be distributed in space. The magnetic field is

again given by Eq. (5). Let −eρe(x) be the electron charge density

where x is the vector from the center of the electron to an element
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of the electron magnetic moment. Then an element of the electron

magnetic moment is given by−eρe(x) ~σ d3x/(2m) where m is the

electron mass, and ~σ is the electron spin operator. Define r′ to be

the vector from an element of proton magnetic moment to an element

of electron magnetic moment, r is the vector from the center of the

proton to the center of the electron, again y is the vector from the

center of the proton to an element of the proton magnetic moment,

and y + r′ = r + x. Then

∆E20 =
gp e

2~σ

2M2m

∫

ρe(x) d3x ρp(y) d3y

[

−∇2
r

( I

4π|r + x− y|
)

+ I · ∇r

(

∇r
1

(4π|r + x− y|)
)]

R2
20(r) r

2dr. (9)

Proceed as in the previous section, and get

∆E20 =
gp e

2

2M2m
~σ · I

∫

ρe(x) d3x ρp(y) d3y
2

3
δ3(r + x− y)R2

20(r) r
2dr. (10)

For the purpose of illustration, choose ρp(y) = δ(|y| − r0)/(4πr
2
0),

and choose ρe(x) = δ(|x| − a)/(4πa2). Then

∆E20 =
gp e

2

2M2m
~σ · I

∫

δ(|x| − a)

4πa2
d3x

δ(|y| − r0)

4πr2
0

d3y

2

3
δ3(r + x − y)R2

20(r) r
2dr. (11)
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Use
∫

δ(|y| − r0) δ
3(r + x− y)d3y = δ(|r + x| − r0), and get

∆E20 =
2

3

gp e
2

(2M2m)
~σ · I

∫

δ(|x| − a)

4πa2
d3x

δ(
√

r2 + x2 − 2rx cos (θ) − r0)

4πr2
0

R2
20(r) r

2dr =

2

3

gp e
2

(2M2m)
~σ · I

∫

sin (θ) dθ

2

δ(
√

r2 + a2 − 2ra cos (θ) − r0)

4πr2
0

R2
20(r) r

2dr.

(12)

Set u = − cos (θ), so du = sin (θ) dθ. Since −1 ≤ u ≤ +1, it follows

that r0 − a ≤ r ≤ r0 + a. Use the property of the delta function

that
∫

du δ(
√
r2 + a2 + 2rau− r0) =

∫

δ(u− ū)du/(f ′(u)) where ū is

determined by r2+a2+2raū = r20, and f(u) =
√
r2 + a2 + 2rau−r0.

So

∆E20 =
gp e

2

6Mm
~σ · I

∫

du δ(u− ū)

2ra

√
r2 + a2 − 2rau

4πr2
0

R2
20(r) r

2dr

gp e
2

6Mm

∫ r0+a

r0−a

~σ · I
2ra

r0
4πr2

0

R2
20(r) r

2dr. (13)

Approximate R2
20(r) by (4 − 8r/a0)/(2a0)

3, and get

∆E20 =
2gp e

2

(3Mm)

~σ · I
4π(2a0)3

(

1 − 2r0
a0

− 2a2

3a2
0

)

. (14)
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