FINITE SELF MASS OF THE ELECTRON II

ABSTRACT

The charge of the electron is postulated to be distributed or extended
in space. The differential of the electron charge is set equal to a function
of electron charge coordinates multiplied by a four-dimensional differential
volume element. The four-dimensional integral of this function is required
to equal the electron charge in all Lorentz frames. The self-mass of such an

electron is found to be finite.

I[. LOGARITHMIC DIVERGENCE OF THE SELF-MASS

This section will show that the self-mass of a point electron diverges
logarithmically. The electron self-mass is associated with the following
sequence of events: a point electron propagates from spacetime point
y to spacetime point w where it emits a photon, the electron then
propagates to spacetime point z where it absorbs the same photon,
and finally the electron then propagates to spacetime point z. The

propagator for this process, which is second order in the charge e,! is
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Sra(x —y) = /SF(:B — 2)(—ier")Sr(z — w)(—iey,)
Sg(w —y)Dp(z —w)d*zd*w (1)
where v* and v, (¢ = 0,1,2,3) both represent the Dirac matrices,

Sp(x — 2),Sp(z — w), and Sp(w — y) represent electron propagators.

The electron propagators are given by

Sp(x —2) = /exp (—ip' - (x — 2))Sp(p) (2:)/4 ) (2)
. d*k
Se(:—w) = [ew (i (= u)SiR g )
and
Se(w—1) = [ (i w-Se) T @

where we choose the following representations in momentum space for

the electron propagators:

il + mo)
SF(p) - p/2 . mg ’ (5)
Se(p) = LH™O) (©)
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and
2/Kk2+m3NkO — /K2 +mi+ie KO+ K2+ md —ie

(7)
where p, p’, and k are four-momentum vectors, §’ = yp,, p = 7*p,,
k = ~"k,, and mg is called the bare electron mass. The observable or
physical mass is given by m = mgy+ Jdm where dm is the self-mass. The
photon propagator is given by

dq
(2)

Di(z — w) = —i / exp (—ig- (= — w))Dr(q) (®)

W~

Choose the following representation for the photon propagator in mo-

mentum space:

1 1 1
Dr(q) = ( _ . ) 9
r(4) 2lq| \q° — |q| +ie  ¢°+ [q| — ic ©)

where ¢ is a four-momentum vector. It should be noted that the Eq. (7)

and Eq. (9) are not the usual choice for the propagators.

Introduce the following abbreviations:

d*p

(2m)*

(P) = Sr(p) exp (+ip - y) (10)

and
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(P) = St exp (i’ ) 5o (1)
Then using v*(k + m)y, = —2§ + 4mo.
Seato—y) = (=ie)? [ (P)exo ' >%%Z) exp (—ik - (z — w))

d*k ( 1 B 1 )
(2m)*\ko — 2+ mp +ie kO + /K2 md — e

(=) d*q exp(—iq-(z —w)) ( 1 B 1 )
(2m)* 2|q ¢° = la| +ie  ¢"+|q| —ie

d*z d"w exp (—ip - w) (P)

:/(P’) exp (z'p'ozo)lllgexp(—ipowo)dzodw(]]g(P). (12)

where

(AR oo (2K o)
Il_/(27r) p(—ik™( ))2 /7k2—|—m%

1 ~1
+ ., (13
<k0—\/k2+m3+z’e k0+\/k2+m3—z’e) 13)
dq® exp (—ig®(2° — w° 1 1
12:/ (—ig"( ))(0 — ,),(14)
(2) 2|q ¢° — |a| +ie  ¢°+ |g| —ie

and
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I3 = /exp li(k+q—p) - z]d®zexpi(—k — q + p) - W]d*w
= (27)°6°(k + q — p)(27)*0°(~k — q + p)

= (2n)*6%(p’ — p)(27)°0° (—k — q+ p). (15)

Here 0() denotes the delta function. Use contour integration and find

—270 /k2 2 _ 9ndfe. 4 4
I = _iH(ZO_wo)eXp(—iM(zo - wo))( 7° VK2 + mE — 297k; + 4my)

2¢/k2+m3
290 /K2 + 2 — 299k; + 4
—i H(w°—2%) exp(+iy/k2 + m3 (zo—wo))(+ 7 Mo — 2y mo)’
2v/k? +m3

(16)

where H() is the unit step function, and the index j = 1,2,3. Again

use contour integration and find

. o_,,0
I — _Z.eXp( ilq|(z” —w ))H(zo )
2|q]

Z.eXp (_i|q|(w0 - ZO))H(wO . ZO) (17)
2|q| '

The product I; 15 contains four terms. Since H(2° —w®) H (w®—2%) = 0,

two of the terms are zero. So
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Ll = ,)2<—270\/k2—|—m3—27jkj—|—4m0)
= (—1
v 2|a|2/k? + mj

H(z" —w®) exp (—i(\/k2 4+ m + |q])(z° — w’))

N (—z’)2<+270 VK2 +md—297k; + 4m0)
2|q| 2/ k? + m

H(w® — 2°%) exp (—z’(\/k2 +mZ + |q]) (v’ — ZO)). (18)

Introduce

I = /exp ((—z’(\/k2 +m2 4 |q|)(z° — wo))H(zo —w?)

exp [i(p/"2° — p"w®)]d"dw®, (19)

and

I = /exp ((—l—z’(\/k2 +mé+|q])(z" — wo))H(wO - 29

exp [i(p°2" — p"w®)]dzdu® . (20)

In Eq. (19), change variables from 2° to t° = 2% — w?, so

I = /H(to) exp (—i(y/k2 +mi + |a| — p)t°)dt’ exp [i(p* — p°)w)du”.

(21)

By the theory of generalized functions,? I] = 27 §(p'® — p°)Is; where
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—i
Is1 = +75(y/k2+m2+ |ql —p")).  (22)
. <\/W+ P " )

In Eq. (20), change variables from w® to t° = w® — 2%, so

I, = /H (t°) exp (—i(y/k> + md + |q| + p°)t°)dt° exp [i(p'® — p”)2"]dz" .

(23)

By the theory of generalized functions,? I} = 27 6(p'® — p°) 5o where

—1
Igy = +7o(\/k2+mi+|a|+7p°)).  (24)
: <¢k2+m3+lq|+p0 ’ )

A delta function vanishes when its argument is not zero. The argument
of the delta functions in Eqgs. (22) and (24) is never zero, so both delta

functions are zero and may be dropped. Then

Sro(z —y) = —62/<P’) (11(=29" \/ K2+ md — 297 k; + 4my))
+ (15(4+27° /K2 + mZ — 297k + 4mo) ) I3 (53,;;3 (er)s) (P)

_ 2 /(P’) &k &P 1
(2m)? (27)° 2|q|2+/k2 + m2

(27)°6%(p' — p)(27)°0°(—k — q + p)

21 6(p'0 — [151 70/ k2 4+ m2 — 297 k; + dmg)+
Tso(+27° /K2 +m2 — 297 k; + 4m0)} <P> (25)
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Use

/ %SF@') exp (—ip' - 2)(2m)'6' (5 — p) = Sr(p) exp (—ip - @),
(26)

and find

(27)*0*(+k+q—p) Pk d’q

Spa(z—y) = —ie” / Sr(p)exp (—ip - x)

2lq|2/k2+m3  (2m)% (2m)3
[151(—2’}/0 \/k2 + mg — Q’Yj/{?j + 4m0)—|—

I5o(+27° \/m — 297k + 4m0)} Se(p)exp (ip-y) (ng
:/SF(P) exp (—ip - z)(—iX2(p))Sr(p) exp (+ip - y) (erz)94 (27)
where
_ 2 >k ﬁ 353 _ L
Sa(p) = ¢ [ sy 25+ Py

[151(—2’}/0 \/ k2 + mg - Q’Yj/{?j + 4m0)—|—
Iso(+27° /K2 +m2 — 297 k; + 4m0)] (28)

Yo (p = my) is identified approximately as dm the self-mass.!
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It is convenient to continue the calculation in the frame where the

electron is initially at rest, so p =0 and k = —q. Then

d3q 1
Yio(p =mo,p=0 :62/
2(? 0 p ) (27T)3 2|q|2 / 2_|_m2

[—270\/q2—|—m3—|—27jqj—|—4m0_I_QW Vaz+md +273q3+4m0
V@ +mg + [a| = mg V@ + mi + |af +mo

(29)
The terms in the numerator, which are linear in ¢, g2, and g3, integrate

to zero. Put the terms in brackets over a common denominator. Then

/d?’q —4mor/q% + mg + 8mo (g + /a2 +m3)}
2Iql 2v/q? +m§2|q|(lal + Va2 + m§)

- =] @0

= al |- +
47T2 / |q|+\/q +md P+ m

(p m(]?p_o 3

Thus Ya(p = mo,p = 0) = dm — [~ dla|/|a| — log|al as |g] — oo,

and the self-mass of the point electron is logarithmically divergent.

II. EXTENDED ELECTRON COORDINATES

In the rest frame of an electron charge distribution, let z/* = (20, 21, 22 2!3)

denote a spacetime charge point. Let z# = (2%, 2%, 22, 22) denote the

center of the charge distribution. The charge distribution of the elec-

tron is assumed to have a well-defined center, which is identified as the

argument of the wave function. The shape of the charge distribution
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depends on the motion of the charge, and is assumed to be unaffected

by any interaction. Sometimes the superscript will be omitted, and we

will write 2/, = (20,21, 2/2, 2/3) and z, = (z

0
)

xl 22 23). Introduce

I, = x, — x, or equivalently ## = x/* — z#. In a frame of reference

in which the charge distribution moves with a constant speed 3 in the

3 : : ! 10 /1 12 /13 :
+2° direction, let o/ = (x!) 2/} x/2 2/%) denote a spacetime charge

0

O xl a2 23 ) denote the center of the charge

point, and let z,, = (x
distribution. Introduce &, = 2/, —z,,. A Lorentz transformation yields

5.1
Ly

v=1/y1- 3%

In the rest frame, the electron charge e is equal to [ p.(2,)d(2Y)d*z,

5.2

_ 51 ~3
- $m> zr

= j?m T, = V(i’gn - ﬁjgn)> and jg = V(i’?n - ﬁjgn) where

where p,.(Z,) is the charge density in the rest frame.? So an element of

charge in the rest frame is given by

de(Z,) = p(2,)0(2°) d*%,. (31)

In the moving frame described above, the element of charge is

de(Em) = py (En)S(1(&, — BE) d'. (32)

Consider a uniformly charged spherical surface of radius a, which is

at rest, and is centered at x = (z, 2%, 23). The charge density is given

by
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e

pr(Er) = =50(V(#])? + (@2)? + (#) — o) (33)

When the charge moves in the +2?2 direction with a speed 3, the charge

density is given by

e
4ra?

pr(L(Tm)) (/@) + () +72(3, — B25,)2 —a)  (34)

III. FINITE SELF-MASS OF THE EXTENDED ELECTRON

Take the extended electron to be initially at rest. It will be as-
sumed that when an element of electron charge emits a photon of four-
momentum ¢, then the electron recoils with a speed 3 = |k|/k°. When
an element of electron charge absorbs a photon of four-momentum g¢,
then the electron acquires a four-momentum p’ = p.

The photons are emitted and absorbed at charge points, so replace
Dp(z — w) by Dp(2 — w'). Each charge point propagates between
emission and absorption of the photon with momentum k, so Sg(z —w)
is replaced by Sp(z’ —w'). In addition, the first e in Eq. (1) is replaced
by the four-dimensional integral of de(Z), and the second e is replaced

by the four-dimensional integral of de(w). Then Eq. (1) is replaced by

Srae(z — ) = / Sp(z — ) (—ide(2)")Sp(< — w') (—ide(i),)

Sp(w —y)Dp (2 —w')d*z d*w, (35)
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and Eq. (12) is replaced by

Sesela—y) = (—ie)? [ (P) exp it - o) LA

21/k? +m?

exp (—ik - (' —w'))

d4k:< 1 B 1 )
Rm)ANE0 — /K2 + m2+ie KO+ /K2 +m2 —ie

g el w11
( )(QW)‘* 2|q| <q°— la| +ic  ¢"+ |q] —z’e)
de(Z) de(w)

d*z d*w exp (—ip - w) (P) (36)

Change variables from z to 2’ and from w to w’. and get

(—2% + 4m0)

exp (—ik - (' — w'))

d4k:< 1 B 1 )
@Rm)ANE0 — /K2 m2+ie KO+ /K2 + m2 —ie

(=) d*q exp(—iq- (2 —w')) ( 1 B 1 )
(2m)* 2|q ¢° —lal +ie  ¢"+|q| —ie
exp (—ip’ - 2) de(?) exp (+ip - w)@d‘lz' d*w' exp (—ip - w') (P)

(37)
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In place of Eq. (18) for 1115 is

=29 \/k2+m3 — 297 k; + 4m0)

2|q| 2/ k? + m}

H(2"" —w") exp (—i(y/k> +md + |q|)(z° — w”))

N (_Z,)2<—|—270 VK2 +md—297k; + 4m0)
2|q| 2/ k? + m}

Hw"” — 2"°) exp (—z’(\/k2 +m2 + |q|)(w" — Z’O)), (38)

(hIo). = (~i)?(

which is to be multiplied by exp (—ip’ - 2)de(Z) exp (+ip - w)de().
For the purpose of illustration, pick the electron charge to be uni-
formly distributed on a spherical surface of radius a in the electron rest

frame. For 2’ — w® > 0, the electron is initially at rest, so

1
4ma?

d ~7‘ . ~ . ~
eXp(Jrip-zDT)# = /exp (ip’w, — ip - W,)

O(v/(@}) + (02)? + (@})? = a)d(@y) d'w, = 1. (39)
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After emission of the photon, the electron travels with a speed 3 = |k|/k°.

Choose k to be in the direction of 23. Then

~—

1
4ra?

exp(—ip - 2m)7de(zm

— [exp i+ v 5,

O(v/(2h)? + (22)2 +72(2, — B22)? — a)d(v(2), — B2,,))d' 2 =

1

[ e (i858 (T B T G - )

0(|zm| — a)d?’é’m =

, L1
/ exp (=imoByz,) s

exp (i|qla) — exp (—iqla) _ sin(|qla))
2i|qa lqla

(40)

where 3y = [k|/\/k%% — k|2 = |a| /mo, 2, = 23, 2, = 20y 20 /7 = 2,
and p’° = my.
For w'® — 2% > 0, the electron is finally at rest. After emission of the

photon, the electron travels backward in time with a speed 8 = |k|/k°.

So

1
4ma?

de(Z, 0~ ) -
exp (=ipf -2 5 = e (it ipl - 2,)

S(V(E)?+ () + (2?2 - a)d(z)d' % = 1, (41)
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and

1

4ra?

_ / exp (+ip@L, — ip - ¥,

S(\/(@},)% + (W2)2 4+ ¥2(@3, — Bi0,)2 — a)d(y (@0, — Bad,))d iy, =

.
[ e (in38) o @ (P + @ - a) o =

/ exp (—imofByidd,)

01| — )iy, =

exp (i|q|a) — exp (—i|qla) _ sin(|qla))
2i|qa lqla

(42)

. So Eq. (30) is replaced by

Yoe(p = mo,p =0) =

62/f44wyf+%+%mw+v¢+%q

(2m)? 2|q|2v/q2 + m32|q|(ja] + /a2 + md)
sin (jala)) _
lqla
e?my 1 2 sin (|q|a))
o [ dal[- T — - 43)
™ lal + Va2 +md Vo +mgd  ldla

The integrand is finite for small |q| since sin (|q|a)/(|qla) = 1 at |q| = 0.

Take the absolute value of the integrand and note that for large |q]

1 2 > d|q|

> d|q]
/uiﬂﬂqumﬁm}*/ P

(44)

Thus the integral converges absolutely, and the self-mass is finite for
the assumed charge distribution. This suggests, but does not prove

that the self-mass will be finite for a charge distributed over a finite
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region of space. The integral for the self-mass will be evaluated in the

appendix.

APPENDIX

Write Eq. (43) in the form

emy [ 1 2
Sa(p=map=0) = 5 [ dal[- + ]
4 42 lal + Va2 +mE g+ mi

exp (i]qla) — exp (—i|q|a) (45)
2ilgla '

Multiply the first term in the brackets by (—|q|++/q? + m3)/(—|a|++/a? + md).

Then multiply —\/q2 + m2/m32 by /a2 +m2/y/a2 + mZ. The result

is

de(p =my, P = 0) — 62m0 /OO d|q| |:_¢
’ 47r22z'a 0 m%,/q2+mg

1 1
——————+ — | (exp (¢|q|a) — exp (—t|q|a)). (46
e g (e Glale) — e (ilala). (40

Change variables in the terms multiplied by exp (i|q|a) by replacing |q]
by —|q|, and find

e2mo

Yoe(p = mo,p=0) = 47T22z'a(112 + I3+ 1y) (47)
where
I = /+oo d|q|exp(—z’|q|a)<¢), (48)
—o m3\/q? + m}
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—+00 1
Ly — — / dialexp (—ilqla)(———),  (49)
—o0 <|q|\/q2+m3)

and

d i — . 50
N la| exp (—i[q]a) 2 mia (50)

/+°° sen(q)  +2i 5
L=-— S
Set |q| = mo|d'|, and find

) L d'|
1122/d|Q|€XP(—Z|Q|moa)<m)> (51)

and

(52)

1
I3 = —/ d|<1’|exp(—ilq’|a)( )
molq’|\/q? + 1

To integrate Eqns. (51) and (52), the following integrals will be used

with the convolution:

/ . / 1
n= [ ddlex(~ilq moa) () = 2Hollmoal).© (53)

I, = / d|q'| exp (—i|q'|moa)|d| = 278 (mea), ° (54)
and
/ . / 1 . 6
I3 = [ d|q'|exp(—ilq |moa)m = —misgn(moa). (55)

Here K is the modified Bessel function of order zero, which is given

by

Ko(z) = %i[Jo(z'x) +iNo(iz)] T (56)
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Here Jj is the Bessel function of order zero, and Ny is the Neuman

function of order zero. Use the convolution © to write

1 21
I — Vi _ - = ! _
12 27Tm0/2K0(a)2m§ (ma — a)da mO/KO(a)é(a ma) da
(57)
and
I3 = —! /QK (o) (—mi)sgn(ma — a)da = ﬂ/ma 2Ky(a) d
13 = 2mme 0 g = — A 0 .
(58)

Ky can be written as a series. For small argument, K, takes the form

x x? x

Ko(a) = ~1n (3) —7—Z<ln(§) +7—1) 8 (59)

where v = 0.57721... is Euler’s constant. Then

Ké(x)%—%—%(ln(g)%—v—%), (60)
SO
Iy = %Ké(ma) ~ ;—i[—mioa - %(ln (g) +v - %)} ,  (61)
and
I3 ~ —ﬂi—i(moaln (%) + moa(v — %)) (62)
So
Lo+ s+ 1y = %[—372(]& (ln (m;a) ‘I'V_Z)} (63)
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and finally

e’m moa 5
Zaclp=mo,p=0) ~ 7o [_31]“(70) —3r+gl (64
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