KLEIN-GORDON SCATTERING AMPLITUDE (A REVIEW)

The Klein-Gordon equation for a free particle is

$$\partial_{\mu}\partial^{\mu}\phi(x) + m^{2}\phi(x) = 0. \tag{1}$$

The positive energy solution is $\phi(x) = N \exp(-ip \cdot x)$ where the normalization constant is chosen to be $N = 1/\sqrt{2EV}$ for a particle in a large box of volume V. The three-momentum \mathbf{p} is determined by periodic boundary conditions, and the three-momentum values are discrete.

Let $V \to \infty$. Then the three-momentum values are continuous, and $N = 1/\sqrt{(2\pi)^3\,2E}\,.$ Recall or verify that

$$\int i \left(\phi_f^*(x) \partial_0 \phi_n(x) - \phi_n(x) \partial_0 \phi_f^*(x) \right) d^3 x = \delta^3 (\mathbf{p}_f - \mathbf{p}_n)$$
 (2)

.

The Klein-Gordon propagator can be written as the Fourier transform

$$\Delta_F(x-y) = \int \frac{d^4k}{(2\pi)^4} \Delta_F(k) \exp\left(-ik \cdot (x-y)\right)$$
 (3)

Date: October 19, 2014.

where

$$\Delta_F(k) = \frac{1}{(k^0)^2 - \mathbf{k}^2 - m^2 + i\epsilon} = \frac{1}{2\sqrt{\mathbf{k}^2 + m^2}} \left(\frac{1}{k^0 - \sqrt{\mathbf{k}^2 + m^2} + i\epsilon} - \frac{1}{k^0 + \sqrt{\mathbf{k}^2 + m^2} - i\epsilon} \right). \tag{4}$$

The Klein-Gordon equation for a particle in an electro-magnetic field

is

$$\frac{\partial}{\partial x^{\mu}} \frac{\partial \psi(x)}{\partial x_{\mu}} + m^{2} \psi(x) = -\hat{V}(x)\psi(x) \tag{5}$$

where

$$\hat{V} = +ieA_{\mu}\frac{\partial}{\partial x_{\mu}} + ie\frac{\partial A^{\mu}}{\partial x^{\mu}} - e^2A^{\mu}A_{\mu}. \tag{6}$$

 A^{μ} is the four-dimensional potential, and e is the charge of the particle.

The solution to Eq. (5) is

$$\psi(x) = \phi(x) + \int \Delta_F(x - y)\hat{V}(y)\psi(y)d^4y.$$
 (7)

To verify that Eq. (7) is a solution to Eq. (5), apply $(\partial_{\mu}\partial^{\mu} + m^2)$ to $\psi(x)$, and find

$$(\partial_{\mu}\partial^{\mu}+m^{2})\psi(x) = (\partial_{\mu}\partial^{\mu}+m^{2})\phi(x) + \int (\partial_{\mu}\partial^{\mu}+m^{2})\Delta_{F}(x-y)\hat{V}(y)\psi(y)d^{4}y$$
$$= \int -\delta^{4}(x-y)\hat{V}(y)\psi(y)d^{4}y = -\hat{V}(x)\psi(x), \quad (8)$$

which is just Eq. (5).

Consider the scattering of a positive energy Klein-Gordon particle. A wave of definite three-momentum \mathbf{p}_i at $x^0 \to -\infty$ is sent into a region of space where there is an electro-magnetic potential A^{μ} . The integral

$$I = \lim_{x^0 \to \infty} \int d^3x [\phi^*(x)i\partial_0\psi(x) - \psi(x)i\partial_0\phi^*(x)]$$
 (9)

will be evaluated using two different expressions for $\psi(x)$. First, write $\psi(x) = \sum_n a_n \phi_n(x)$ as $x^0 \to \infty$ where \sum_n is the sum over all possible plane wave states (actually an integral), and a_n is the probability amplitude that a particle emerges after scattering as $x^0 \to \infty$ in the plane wave state with three-momentum \mathbf{p}_n . Then

$$I = \lim_{x^0 \to \infty} \int d^3x \sum_n a_n i \left(\phi_f^*(x) \partial_0 \phi_n(x) - \phi_n(x) \partial_0 \phi_f^*(x) \right) d^3x = a_f. \quad (10)$$

Next, evaluate Eq. (9) by using Eq. (7) for $\psi(x)$. Then

$$I = \lim_{x^{0} \to \infty} \int d^{3}x \left[\phi_{f}^{*}(x) i \partial_{0} \phi_{i}(x) - \phi_{i}(x) i \partial_{0} \phi_{f}(x) + \lim_{x^{0} \to \infty} \int d^{3}x \frac{\exp(i p_{f} \cdot x)}{\sqrt{2E_{f}V}} \frac{(k^{0} + p_{f}^{0})}{2\sqrt{\mathbf{k}^{2} + m^{2}}} \exp(-ik \cdot (x - y)) \frac{d^{4}k}{(2\pi)^{4}} \left(\frac{1}{k^{0} - \sqrt{\mathbf{k}^{2} + m^{2}} + i\epsilon} - \frac{1}{k^{0} + \sqrt{\mathbf{k}^{2} + m^{2}} - i\epsilon} \right) \hat{V}(y) \psi(y) d^{4}y. \quad (11)$$

The first integral is Eq. (2). To integrate the second integral, introduce

$$I_S = \int \frac{dk^0}{2\pi} \frac{(k^0 + p_f^0)}{2\sqrt{\mathbf{k}^2 + m^2}} \exp\left[-ik^0(x^0 - y^0)\right] \left(\frac{1}{k^0 - \sqrt{\mathbf{k}^2 + m^2} + i\epsilon} - \frac{1}{k^0 + \sqrt{\mathbf{k}^2 + m^2} - i\epsilon}\right). \tag{12}$$

Use contour integration, and find

$$I_{S} = \lim_{x^{0} \to \infty} -i \int \left[\frac{(\sqrt{\mathbf{k}^{2} + m^{2}} + p_{f}^{0})}{2\sqrt{\mathbf{k}^{2} + m^{2}}} \exp(-i\sqrt{\mathbf{k}^{2} + m^{2}}(x^{0} - y^{0})) H(x^{0} - y^{0}) + \frac{(-\sqrt{\mathbf{k}^{2} + m^{2}} + p_{f}^{0})}{2\sqrt{\mathbf{k}^{2} + m^{2}}} \exp(+i\sqrt{\mathbf{k}^{2} + m^{2}}(x^{0} - y^{0})) H(y^{0} - x^{0}) \right].$$
(13)

Note that as $x^0 \to \infty$, $H(x^0 - y^0) = 1$, and $H(y^0 - x^0) = 0$. So

$$I = \delta^{3}(\mathbf{p}_{f} - \mathbf{p}_{n}) - i \int d^{3}x \, \frac{\exp\left(ip_{f} \cdot x\right)}{\sqrt{2E_{f}V}} I_{S} \exp\left(+i\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})\right) \frac{d^{3}k}{(2\pi)^{3}} \hat{V}(y)\psi(y)d^{4}y. \tag{14}$$

Note that I contains the integral

$$I_{S1} = \int d^3x \, \exp\left(+i(\mathbf{k} - \mathbf{p}_f) \cdot \mathbf{x}\right) = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{p}_f). \tag{15}$$

So

$$I = \delta^{3}(\mathbf{p}_{f} - \mathbf{p}_{n}) - i \int \exp\left[i(p_{f}^{0} - \sqrt{\mathbf{k}^{2} + m^{2}})x^{0}\right] \frac{(\sqrt{\mathbf{k}^{2} + m^{2}} + p_{f}^{0})}{2\sqrt{\mathbf{k}^{2} + m^{2}}} (2\pi)^{3} \delta^{3}(\mathbf{k} - \mathbf{p}_{f}) \frac{d^{3}k}{(2\pi)^{3}}$$

$$\frac{\exp\left[i\sqrt{\mathbf{k}^{2} + m^{2}}y^{0} - i\mathbf{k} \cdot \mathbf{y}\right]}{\sqrt{2E_{f}V}} \hat{V}(y)\psi(y)d^{4}y =$$

$$\delta^{3}(\mathbf{p}_{f} - \mathbf{p}_{n}) - i \int \exp\left[i(p_{f}^{0} - \sqrt{\mathbf{p}_{f}^{2} + m^{2}})x^{0}\right] \frac{(\sqrt{\mathbf{p}_{f}^{2} + m^{2}} + p_{f}^{0})}{2\sqrt{\mathbf{p}_{f}^{2} + m^{2}}}$$

$$\frac{\exp\left[i\sqrt{\mathbf{p}_{f}^{2} + m^{2}}y^{0} - i\mathbf{k} \cdot \mathbf{y}\right]}{\sqrt{2E_{f}V}} \hat{V}(y)\psi(y)d^{4}y. \quad (16)$$

Use $p_f^0 = \sqrt{\mathbf{p}_f^2 + m^2}$, and find

$$I = \delta^3(\mathbf{p}_f - \mathbf{p}_i) - i \int \phi_f^*(y) \hat{V}(y) \psi(y) d^4y.$$
 (17)

Thus $I = a_f = \delta^3(\mathbf{p}_f - \mathbf{p}_i) + \int \phi_f^*(y)\hat{V}(y)\psi(y)d^4y$. To agree with a

common notation, replace a_f by S_{fi} , and write

$$S_{fi} = \delta^3(\mathbf{p}_f - \mathbf{p}_i) - i \int \phi_f^*(y) \hat{V}(y) \psi(y) d^4y.$$
 (18)

References

[1] J.D. Bjorken and S. D. Drell, *Relativistic Quantum Mechanics* (McGraw-Hill, New York, 1964), pp. 184-191.