KLEIN-GORDON SCATTERING AMPLITUDE
(A REVIEW)

The Klein-Gordon equation for a free particle is
9,0 (x) + m*¢(x) = 0. (1)

The positive energy solution is ¢(z) = N exp (—ip - ) where the nor-
malization constant is chosen to be N = 1/v/2EV for a particle in
a large box of volume V. The three-momentum p is determined by
periodic boundary conditions, and the three-momentum values are dis-
crete.

Let V' — oo. Then the three-momentum values are continuous, and

N =1/4/(2m)32E . Recall or verify that

/ 1(63(2)B0n() — du(2)0083(2))dBx = Dy —pa)  (2)

The Klein-Gordon propagator can be written as the Fourier trans-

form

Ap(z —y) = / %AF@)exp(—ik-(z—y)) 3)

Date: October 19, 2014.



2 KLEIN-GORDON SCATTERING AMPLITUDE (A REVIEW)

where

1
Arlk) = (k0)2 — k2 — m? + ie -

1 1 1 )
— . (4
2\/k2—|—m2)<k:0—\/k2+m2+z'e kO 4+ vk2 4+ m?2 — e (4)
The Klein-Gordon equation for a particle in an electro-magnetic field

is

9 0yY(x) 2 _ 7
G e M) =~V (@)(a) )
where
~ 0 . 0A+ 2 p
V = —I—zeA“&EH + e oo € ArA, . (6)

A* is the four-dimensional potential, and e is the charge of the particle.

The solution to Eq. (5) is

ww=¢@»g/Aﬂx—wV@wwm%. (7)

To verify that Eq. (7) is a solution to Eq. (5), apply (9,0* + m?) to

¥(x), and find

@0 +m?)i(a) = @, )o(2) + [ 0,0%+m®) Ar(o—) () b0) 'y
— [ -5 -V W'y = V. ©)
which is just Eq. (5).
Consider the scattering of a positive energy Klein-Gordon particle.

A wave of definite three-momentum p; at 2° — —oo is sent into a

region of space where there is an electro-magnetic potential A#. The
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integral

I = lim [ &x[¢*(2)i0n(z) — Y (2)ided* (z))] 9)

20—00
will be evaluated using two different expressions for ¢(z). First, write
P(x) =" andn(z) as 2° — oo where Y is the sum over all possible

plane wave states (actually an integral), and a,, is the probability am-

0

plitude that a particle emerges after scattering as x° — oo in the plane

wave state with three-momentum p,,. Then

I = lim d?’:EZanz &4(2) 0ot () — Gu(2) 000} (2))d*x = ay . (10)

20—00

Next, evaluate Eq. (9) by using Eq. (7) for ¢(z). Then

1= lim [ d*z|6}(x)iongi(x) — di(w)idoey(x)+

20 —o00

k0+ 0 4
P exp (ips - z) ( p}) exp (—ik - (z — 1)) d*k

lim

20—00 \/QE'fV 2\/k2_|_m2 (27’(’)4
1 A
- |4 d'y. (11
e e Tl e A ML

The first integral is Eq. (2). To integrate the second integral, introduce

dk® (k° +p%)
I 00,0 .0
o= e e =)

1 1
— . (12
<k:0—\/k2+m2+z'e k:0+\/k2+m2—z'e) (12)

Use contour integration, and find

exp (—ivk? +m2(2° — y))H (z°—y")

(VK2 mE o+ ph)
Is = lim —1 [
2v k2% + m?
(=K +m? +p})
+ exp (
2vk?Z + m?

20—00

+ivk2 +m2(2® — y")H(y® — 2°)|. (13)
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Note that as 2° — oo, H(2° —4°) = 1, and H(y* — 2°) = 0. So

= 5pypa)i [ e SR e k- () R
(14

Note that I contains the integral

Is1 = /dsz exp (+i(k — py) - x) = (21)%6*(k — py). (15)

So
k2 + m?2 + p9 3
= 0'(prpa) i [ e i) — VIT T ) (Epﬂ (270 55

exp [ivk2 + m2y° — ik - y]
J2E;V

(\/P} +m? +pf)
3 . .0 0
6(pf_pn)_Z/eXp[z(pf_\/p?f_l'mz)x )] QW

exp [iy/p% + m?2y’ —ik -y
o ’ d V(y)e(y)d'y. (16)

V(y)w(y)dy =

V2EV
Use p} = 1/p7 +m?, and find
I =6(ps—pi) —i/¢}(y)‘7(y)w(y)d4y- (17)

Thus I = ay = 8*(py — pi) + fng}(y)f/(y)z/)(y)d‘ly. To agree with a

common notation,! replace as by Sy;, and write
S5 =~ p) i [ GV W'y, (18)
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