
KLEIN-GORDON PROPAGATOR (A REVIEW)

Define the Klein-Gordon propagator ∆F (x − y) by

∂2∆F (x − y)

∂(x0)2
−∇2

x
∆F (x − y) + m2∆F (x− y) = −δ4(x − y). (1)

Write ∆F (x − y) as a Fourier transform, i.e.,

∆F (x − y) =

∫

d4k

(2π)4
∆F (k) exp (−ik · (x − y)) (2)

where the four-dimensional momentum vector k = (k0, k1, k2, k3). Sub-

stitute Eq. (2) into Eq. (1), and find

∫

d4k

(2π)4
∆F (k)(−k2 + m2) exp (−ik · (x − y)) =

− δ4(x − y) = −
∫

d4k

(2π)4
exp (−ik · (x − y)) (3)

So

∆F (k)(−k2 + m2) = −1. (4)

A solution to Eq. (4) is ∆F (k) = 1/(k2 −m2), but this is not the most

general solution. The general solution is

∆F (k) = 1/[(k0)2−k2−m2]+C1δ(k
0−

√
k2 + m2)+C2δ(k

0+
√

k2 + m2)

(5)
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This can be verified by multiplying Eq. (5) by [(k0)2−k2−m2], and us-

ing (k0−
√

k2 + m2)δ(k0−
√

k2 + m2) = 0 and (k0+
√

k2 + m2)δ(k0+
√

k2 + m2) = 0.

Eq. (4) is then recovered.

Use partial fractions to show

1

(k0)2 − k2 − m2
=

1

2
√

k2 + m2)

( 1

k0 −
√

k2 + m2
− 1

k0 +
√

k2 + m2

)

,

(6)

so

∆F (k) =
1

2
√

k2 + m2)

( 1

k0 −
√

k2 + m2

)

+ C1δ(k
0 −

√
k2 + m2)+

−1

2
√

k2 + m2)

( 1

k0 +
√

k2 + m2

)

+ C2δ(k
0 +

√
k2 + m2 (7)

The integral I below is part of the integral in Eq. (3) and will be evalu-

ated using reasonable physical constraints, which in turn will determine

the constants C1 and C2:

I =

∫

+∞

−∞

dk0 ∆F (k) exp (−ik0(x0 − y0)) = I1 + I2 (8)

where

I1 =

∫

+∞

−∞

dk0
1

2
√

k2 + m2)

( 1

k0 −
√

k2 + m2
− 1

k0 +
√

k2 + m2

)

exp (−ik0(x0 − y0)),

(9)

and

I2 =

∫

+∞

−∞

dk0 [C1δ(k
0−

√
k2 + m2)+C2δ(k

0+
√

k2 + m2] exp (−ik0(x0 − y0)).

(10)
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To evaluate I1 using contour integration, introduce the closed con-

tour below where ε is a small constant and M is a large real value of

k0, which eventually → ∞ :

(1) from −M to −
√

k2 + m2 − ε along the real k0 axis

(2) from −
√

k2 + m2 − ε to −
√

k2 + m2 + ε along a semi-circle of

radius ε, which is centered at −
√

k2 + m2, and is below the k0

axis.

(3) from −
√

k2 + m2 + ε to +
√

k2 + m2 − ε along the k0 axis

(4) from +
√

k2 + m2 − ε to +
√

k2 + m2 + ε along a semi-circle of

radius ε, which is centered at +
√

k2 + m2, and is below the k0

axis.

(5) from +
√

k2 + m2 + ε to +M along the k0 axis

(6) +M to −M along a semi-circle SM of radius M , which is cen-

tered at the origin of the k0 axis and is below the axis.

This contour will be referred to as contour C1. There are no poles

inside the contour, so the integral around the contour is zero. When

x0 − y0 > 0 and M → ∞, the integral vanishes on SM . I1 is identified
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as a Cauchy principle value. So

I1 = −πiRes(k0 = +
√

k2 + m2) − πiRes(k0 = −
√

k2 + m2) =

−πi

2
√

k2 + m2

(

exp (−i
√

k2 + m2(x0 − y0))−exp (+i
√

k2 + m2(x0 − y0))
)

H(x0−y0)

(11)

where H is the unit step function defined by H(x0−y0) = 1 if x0−y0 > 0

and H(x0 − y0) = 0 if x0 − y0 < 0.

Next, evaluate I1 when x0−y0 < 0 by introducing the closed contour

below:

(1) from −M to −
√

k2 + m2 − ε along the k0 axis

(2) from −
√

k2 + m2 − ε to −
√

k2 + m2 + ε along a semi-circle of

radius ε, which is centered at −
√

k2 + m2, and is above the k0

axis.

(3) from −
√

k2 + m2 + ε to +
√

k2 + m2 − ε along the k0 axis

(4) from +
√

k2 + m2 − ε to +
√

k2 + m2 + ε along a semi-circle of

radius ε, which is centered at +
√

k2 + m2, and is above the k0

axis.

(5) from +
√

k2 + m2 + ε to +M along the q0 axis

(6) +M to −M along a semi-circle SM of radius M , which is cen-

tered at the origin of the k0 axis and is above the k0 axis.

This contour will be referred to as contour C2. There are no poles

inside the contour, so the integral around the contour is zero. When
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x0 − y0 < 0 and M → ∞, the integral vanishes on SM . We identify I1

as a Cauchy principle value, so

I1 = +πiRes(k0 = +
√

k2 + m2) + πiRes(k0 = −
√

k2 + m2) =

+πi

2
√

k2 + m2

(

exp (−i
√

k2 + m2(x0 − y0))−exp (+i
√

k2 + m2(x0 − y0))
)

H(y0−x0).

(12)

Integrate I2, and get

I2 = C1 exp (−i
√

k2 + m2(x0 − y0)) + C2 exp (+i
√

k2 + m2(x0 − y0)).

(13)

Multiply I2 by H(x0 − y0) + H(y0 − x0) = 1. Then Eq. (8) can be

written

I =
( −πi

2
√

k2 + m2
+ C1

)

exp (−i
√

k2 + m2(x0 − y0))H(x0 − y0)+

( +πi

2
√

k2 + m2
+ C2

)

exp (+i
√

k2 + m2(x0 − y0))H(x0 − y0)+

( +πi

2
√

k2 + m2
+ C1

)

exp (−i
√

k2 + m2(x0 − y0))H(y0 − x0)+

( −πi

2
√

k2 + m2
+ C2

)

exp (+i
√

k2 + m2(x0 − y0))H(y0 − x0) (14)

The second term represents a Klein-Gordon particle of negative energy

traveling forward in time from y to x. This term is rejected by Feynman

as being unphysical, so eliminate the second term by setting C2 equal

to −πi/(2
√

k2 + m2). The third term represents a particle of positive

energy traveling backward in time. This is unphysical, so eliminate

this term by setting C1 equal to −πi/(2
√

k2 + m2). Put these results
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into Eq. (7), and find

∆F (k) =
1

2
√

k2 + m2)

( 1

k0 −
√

k2 + m2
− πiδ(k0 −

√
k2 + m2)

)

+

−1

2
√

k2 + m2)

( 1

k0 +
√

k2 + m2
+ πiδ(k0 +

√
k2 + m2

)

. (15)

The theory of generalized functions proves that 1/(x±iε) = 1/(x)∓πiδ(x).

Thus

∆F (k) =
1

2
√

k2 + m2)

( 1

k0 −
√

k2 + m2 + iε
− 1

k0 +
√

k2 + m2 − iε

)

.

(16)

An alternative expression for ∆F (k) is

∆F (k) =
1

(k0)2 − k2 − m2 + iε
. (17)


