
SOME INTEGRALS AND A LITTLE E&M (A
REVIEW)

This paper presents a list of integrals that will be useful in the papers

that follow.

I. BOX NORMALIZATION

Box normalization is introduced and briefly explained in the review

paper on the Schrödinger equation. The integral to be evaluated is

I =

∫ +L/2

−L/2

φ∗(x, t)φ(x, t) dx (1)

where φ(x, t) = exp[+i(kx − ωt)]/L. The wave vector k = 2πn/L,

where n is an integer, L is the length of the one-dimensional box, and

ω = ~k2/(2m). For n2 6= n1,

I =

∫ +L/2

−L/2

exp[+i2πx(n2 − n1)/L − i(ω2 − ω1)t]

L
dx ∝

sin [π(n2 − n1)]

π(n2 − n1)
= 0.

(2)

When n2 = n1, then ω2 = ω1, and I = (
∫

exp (0) dx)/L = 1. Thus,

I = δk2,k1
where δk2,k1

, the Kroneckor delta, is defined to be zero if

k2 6= k1 and defined to equal 1 if k2 = k1.
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II. THE DELTA FUNCTION

The delta function δ(x) is defined by

∫

∞

−∞

g(x)δ(x) dx = g(0) (3)

where g(x) is a function that is continuous at x = 0. In the integral

below, introduce y = x− a

∫

∞

−∞

g(x)δ(x− a) dx =

∫

∞

−∞

g(y + a)δ(y) dy = g(a) (4)

where g(x) is continuous at x = a. In the integral below, introduce

y = −x

∫

∞

−∞

g(x)δ(−x) dx =

∫

−∞

+∞

g(−y)δ(y) (−dy) = g(0). (5)

We conclude that δ(x) = δ(−x), i.e., the delta function is an even

function. Next, observe that

∫

∞

−∞

g(x)xδ(x) dx = g(x)x|x=0 = 0, (6)

so we conclude xδ(x) = 0.

The definition of the Fourier transform of the function g(x) is

G(α) =

∫

∞

−∞

g(x)exp(−iαx) dx , (7)
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and the inverse Fourier transform is then

g(x) =
1

2π

∫

∞

−∞

G(α)exp(+iαx) dα . (8)

So the Fourier transform of δ(x) is given by

G(α) =

∫

∞

−∞

δ(x)exp(−iαx)dx = exp(0) = 1. (9)

Therefore, the the inverse Fourier transform of 1 is

δ(x) =
1

2π

∫

∞

−∞

1 exp(+iαx) dα , (10)

and since δ(x) is an even function,

δ(x) = δ(−x) =
1

2π

∫

∞

−∞

exp(−iαx)dα . (11)

The Fourier transform of δ(x− a) is given by

G(α) =

∫

∞

−∞

δ(x− a)exp(−iαx)dx = exp(−iαa), (12)

So the inverse Fourier transform of exp (−iαa) is

δ(x− a) =
1

2π

∫

∞

−∞

exp (−iαa) exp(+iαx) dα . (13)

These formulas will be used often in the papers that follow.
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III. GENERALIZED FUNCTIONS AND MORE FOURIER TRANSFORMS

The reader is encouraged to consult a book on generalized functions.

I have left out too much, and besides, generalized functions are fun.

Possibly the best book to start with is Introduction to Fourier Analysis

and Generalized Functions by M. J. Lighthill(less than 100 pages).

Unfortunately, the 2π is in the exponent in this book. The book I like

is Generalized Functions by D. S. Jones(over 400 pages).

Introduce a function γ(x) which is infinitely differentiable, and γ(x) → 0

as x → ±∞. A generalized function g(x) is defined so that the integral

∫

∞

−∞

g(x)γ(x) dx (14)

exists and is finite. The delta function is an example of a generalized

function. Some ordinary functions can be defined as generalized func-

tions. The definition requires that the discontinuities of the ordinary

function be smoothed out so that all derivatives exist. In addition,

the generalized function → 0 as x → ±∞. As an example, consider

the function sgn(x) = −1 for x < 0, sgn(0) = 0, and sgn(x) = +1

for x > 0. As a generalized function all derivatives exist. Put the

derivative of sgn(x) in Eq. (14), and using integration by parts, find
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∫

∞

−∞

d sgn(x)

dx
γ(x) dx = sgn(x)γ(x)|∞

−∞
−

∫

∞

−∞

sgn(x)(γ(x))′dx =

−−

∫ 0

−∞

(γ(x))′dx−

∫

∞

0

(γ(x))′dx = γ(x)|0
−∞

− γ(x)|∞0 = 2γ(0) .

(15)

By Eq. (3), we see (sgn(x))′ = 2δ(x) .

Recall Eq. (7) where G(α) is defined to be the Fourier transform

of g(x). We now find the Fourier transform of the derivative of g(x).

Using integration by parts,

∫

∞

−∞

dg(x)

dx
exp(−iαx) dx = g(x) exp (−iαx)|+∞

−∞
−

∫

∞

−∞

g(x)
d [exp(−iαx)]

dx
dx =

iα

∫

∞

−∞

g(x) exp (−iαx)dx = iαG(α). (16)

So the Fourier transform of g′(x) is iαG(α) if G(α) is the Fourier trans-

form of g(x). This result will be used to find the Fourier transform of

the function sgn(x).

∫ +∞

−∞

(sgn(x))′ exp (−iαx)dx =

∫ +∞

−∞

2δ(x) exp (−iαx)dx = 2 = iαG(α).

(17)

So the Fourier transform of of sgn(x) is G(α) = 2/(iα).

The above result is used in the evaluation of Eq. (14) in the paper

on Mott Rutherford scattering. The integral is to be evaluated over
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all space. The integral in Cartesian coordinates is best evaluated in

spherical coordinates as below

∫

exp (iq · x)

|x|
d3x =

∫ +∞

0

∫ 2π

0

∫ π

0

exp (i|q|r cos θ)

r
r2 sin θdθ dφ dr =

2π

∫ +∞

0

exp (i|q|r) − exp (−i|q|r)

i|q|r2
r2 dr , (18)

where the spherical coordinate r = |x|. Replace r by −r in the first

exponential. Then

∫

−∞

0

exp (−i|q|r)(−)dr =

∫ 0

−∞

exp (−i|q|r)dr . (19)

So now

∫

exp (iq · x)

|x|
d3x =

2π

i|q|

∫ 0

−∞

exp (−i|q|r)dr−
2π

i|q|

∫

∞

0

exp (−i|q|r)dr

=
−2π

i|q|

∫

∞

−∞

sgn(r) exp (−i|q|r)dr. (20)

Recall that the Fourier transform of sgn(r) is 2/i|q|, so finally

∫

exp (iq · x)

|x|
d3x =

−4π

(i|q|)2
=

4π

|q|2
. (21)

We will now show

∫

∞

−∞

δ(α)δ(x− α) dα = δ(x) . (22)
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To do this, we will use the theorem

∫

∞

−∞

Ψ(α)G(x − α) dα = 2π

∫

∞

−∞

ψ(t)g(t) exp (−itx)dt, (23)

where Ψ(α) is the Fourier transform of ψ(t), and G(α) is the Fourier

transform of g(t). First, let ψ(t) = 1, and let g(t) = 1. Then

Ψ(α) = 2πδ(α), and G(α) = 2πδ(α). Substitute this in Eq. (23),

(2π)2

∫

∞

−∞

δ(α)δ(x− α) dα = 2π

∫

∞

−∞

exp (−itx)dt = (2π)2δ(x) . (24)

Cancel (2π)2, and find Eq. (22).

Next, we will show

∫

∞

−∞

δ(α− y)δ(x− α) dα = δ(x− y) . (25)

Let ψ(t) = exp (iyt), and let g(t) = 1. Then, G(α) = 2πδ(α), and

Ψ(α) =

∫

∞

−∞

exp (iyt) exp (−iαt)dt = 2πδ(α− y). (26)

By Eq. (23),

(2π)2

∫

∞

−∞

δ(α− y)δ(x− α)) dα =

2π

∫

∞

−∞

exp (iyt) exp (−itx)dt = (2π)2δ(x− y) . (27)



8 SOME INTEGRALS AND A LITTLE E&M (A REVIEW)

Thus, we recover Eq. (25).

We will next show

∫ +∞

−∞

Ψ(α)δ(x− α)δ(α+ y) dα = Ψ(x)δ(x+ y). (28)

Write the second delta function as an integral of the exponential, thus

∫

+∞

−∞

Ψ(α)δ(x− α)δ(α+ y) dα =

∫ +∞

−∞

∫ +∞

−∞

Ψ(α)δ(x− α) exp (i(α+ y)t)
dt

2π
dα =

∫ +∞

−∞

Ψ(x) exp (i(x+ y)t)
dt

2π
= Ψ(x)δ(x+ y). (29)

This equation is used in the paper on Møller scattering. The equation

to be integrated there is

∫

1

q2 + iε
δ4(∆p− q)δ4(∆P + q) d4q. (30)

There are four similar integrals to be performed. We do one of them.

∫

1

(q0)2 − (q1)2 − (q2)2 − (q3)2 + iε
δ(∆p1 − q1)δ(∆P 1 + q1) dq1 =

1

(q0)2 − (∆p1)2 − (q2)2 − (q3)2 + iε
δ(∆p1 + ∆P 1). (31)

After doing the other three integrations, Eq. (30) equals
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1

(∆p)2 + iε
δ4(∆p+ ∆P ). (32)

IV. CONTOUR INTEGRATION

The integrals in this section are repeatedly used in the papers that

follow. They are first used in the paper on the photon propagator, and

then in the paper on the Feynman propagator.

In this section, we evaluate integrals on the real axis which have

infinite limits of integration. The approach taken is to define a closed

contour which includes our integral. The contour is chosen so that the

integral on the remainder of the contour is zero or can be determined.

We then use residues to determine our integral.

We wish to evaluate the integral below

I =

∫ +∞

−∞

f(x) exp (−imx)

x− (x0 − iε)
dx (33)

where f(x) is infinitely differentiable,m is positive, x0 is a real constant,

and ε is a small positive constant. Notice that there is a simple pole

below the x axis. Let SM be a semi-circle below the x axis of radius

M with the radius originating at the origin. Let the contour run along

the real x axis from −M to +M , and then from +M to −M along SM .



10 SOME INTEGRALS AND A LITTLE E&M (A REVIEW)

The integral IC, which is defined below, is evaluated using the residue

theorem

IC =

∫ +M

−M

f(x) exp (−imx)

x− (x0 − iε)
dx+

∫

SM

f(z) exp (−imz)

z − (x0 − iε)
dz =

− 2πiRes(z = x0 − iε) (34)

where the residue at z = x0 − iε is symbolized by Res(x0 − iε) and is

equal to f(x0 − iε) exp [−im(x0 − iε)]. The - sign on the right hand

side of Eq. (34) occurs because the contour is traversed in a clockwise

sense. Notice that the path of integration has been chosen so that the

integral on SM vanishes as M → ∞. Thus,

I = lim
M→∞

IC = −2πiRes(x0 − iε) = −2πif(x0 − iε) exp [−im(x0 − iε)].

(35)

When m is negative, we pick SM to be the semi-circle above the x

axis. Then the integral on SM vanishes as (M) → +∞. Thus,

I = lim
M→∞

IC = +2πiRes(z) = 0 (36)

since there are no poles within the contour of integration. The + sign

occurs because the contour is traversed in a counter-clockwise sense.

Next, consider the integral
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I =

∫ +∞

−∞

f(x) exp (−imx)

x+ (x0 − iε)
dx (37)

where m is negative. The simple pole is above the x axis. Evaluate the

integral

IC =

∫ +M

−M

f(x) exp (−imx)

x+ (x0 − iε)
dx+

∫

SM

f(z) exp (−imz)

z + (x0 − iε)
dz =

2πiRes(z = −(x0 − iε)) (38)

Again, the integral on SM vanishes, and

I = lim
M→∞

IC = +2πif(−x0 + iε) exp [−im(−x0 + iε)]. (39)

When m is positive, take SM below the x axis, and find

I = lim
M→∞

IC = −2πiRes(z) = 0. (40)

Next, consider the integral

I =

∫

+∞

−∞

f(x) exp (−imx)

x− x0

dx (41)

where the pole is now on the x axis. Let IC be the integral of

f(z) exp (−imz)/(z − x0) where for m positive, the path of integra-

tion is from −M to x0 − ε, from x0 − ε to x0 + ε along a semi-circle Sε

of radius ε, which is below the x axis, and then from x0 + ε to +M ,
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and from M to −M along a semi-circle SM below the x axis of radius

M . As before, when M → ∞, the integral along SM vanishes. Define

the Cauchy principle value by

P

∫ +∞

−∞

f(x) exp (−imx)

x− x0

dx = lim
ε→0

[

∫ x0−ε

−∞

f(x) exp (−imx)

x− x0

dx

+

∫ +∞

x0+ε

f(x) exp (−imx)

x− x0

dx
]

(42)

Then in the limit as M → ∞, and ε→ 0

IC → P

∫

+∞

−∞

f(x) exp (−imx)

x− x0

dx+

∫

Sε

f(x) exp (−imx)

x− x0

dx = 0 (43)

since there are no poles inside the contour of integration. The second

integral is +πiRes(x = x0). So finally,

P

∫

+∞

−∞

f(x) exp (−imx)

x− x0

dx = −πif(+x0) exp (−imx0) (44)

When m is negative, the path of integration is similar, but SM and Sε

are above the x axis. The result is

P

∫ +∞

−∞

f(x) exp (−imx)

x− x0

dx = +πif(+x0) exp (−imx0). (45)
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V. CHANGE OF VARIABLE

A spacetime point in the rest frame is represented by xµ
r = (x0

r, x
1
r , x

2
r, x

3
r)

where x0
r = ctr, c is the speed of light, and tr is the time in the rest

frame. In a frame of reference which moves with a speed v relative

to the rest frame in the +x3
r direction, a spacetime point is repre-

sented by xµ
m = (x0

m, x
1
m, x

2
m, x

3
m). The two sets of coordinates are re-

lated by the following Lorentz transformation: x1
r = x1

m, x
2
r = x2

m,

x0
r = γ(x0

m − βx3
m), and x3

r = γ(x3
m − βx0

m) where β = v/c and

γ = 1/
√

1 − β2. Since x1
r = x1

m, and x2
r = x2

m, we shall concentrate on

integrals in the x0, x3 plane.

Green’s theorem states

∫

Γ

(

P (x, y)dx+Q(x, y)dy
)

=

∫

R

(∂Q(x, y)

∂x
−
∂P (x, y)

∂y

)

dx dy (46)

where the second integral is over a two dimensional region R in the

x, y plane, and the first integral is along a curve Γ, which encloses the

region R. If Q = x, and P = 0, then Green’s theorem gives

∫

Γ

xdy =

∫

R

dxdy = A (47)

where A is the area of the region R, which is bounded by the curve Γ.

Apply this result to the x0
r, x

3
r plane and find
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A =

∫

Rr

dx0

r dx
3

r =

∫

Γr

x0

r dx
3

r . (48)

Lorentz transform to the moving frame and get

A =

∫

Γm

γ(x0

m − βx3

m)γ(dx3

m − βdx0

m) =

∫

Γm

γ2[(x0

m − β x3

m)dx3

m − (β x0

m − β2 x3

m)dx0

m]. (49)

Use Green’s theorem to make the identification P = −γ2(β x0
m−β2 x3

m)

and Q = γ2(x0
m − β x3

m). Then

A =

∫

Rm

γ2(1 − β2)dx0

m dx
3

m =

∫

Rm

dx0

m dx
3

m =

∫

Rr

dx0

r dx
3

r . (50)

Since dx1
r dx

2
r = dx1

m dx
2
m, we conclude that

∫

dx0

rdx
1

rdx
2

rdx
3

r =

∫

dx0

mdx
1

mdx
2

mdx
3

m . (51)

We will apply the above result to integrals over all of spacetime.

The integral that will be needed in the non-review papers takes the

form

∫

f(x0
r, x

1
r , x

2
r, x

3
r)dx

0
r dx

1
r dx

2
r dx

3
r =

∫

f [γ(x0

m − βx3

m), x1

m, x
2

m, γ(x
3

m − βx0

m)]dx0

m dx
1

m dx
2

m dx
3

m. (52)
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A rigorous proof of Eq. (52) in a more general situation can be found

in advanced calculus books.

VI. A LITTLE E&M

We will treat the electron as an extended charge by replacing the

electron charge e by a Lorentz invariant four dimensionl integral of

the form of Eq. (52). For a charge at rest, the volume integral of

the charge density yields the total charge. As an example, consider a

specific charge distribution , namely, a line charge at rest, which has a

proper length L and which lies along the x3 axis. Denote the charge

points by xµ′

r = (x0 ′

r , x
1 ′

r = 0, x2 ′

r = 0, x3 ′

r ).The left end is at x3 ′

r = 0

and the right end is at x3 ′

r = L. For the charge at rest, the charge

density is ρr(x
′

r) = (e/L)δ(x1 ′

r )δ(x2 ′

r )[H(x3 ′

r )−H(x3 ′

r −L)] where H is

the unit step function, defined by H(x) = 1 for x > 0 and H(x) = 0 for

x < 0. Perform the volume integral over the charge density and find

∫

(e/L)δ(x1′

r ) δ(x2′

r )[H(x3′

r ) −H(x3′

r − L)]d3x′r = (e/L)

∫ L

0

dx3′

r = e.

(53)

Let xµ
r = (x0

r, x
1
r = 0, x2

r = 0, x3
r) denote the spacetime point of

the center of the charge distribution. Introduce x̃ = x′ − x. Change

variables in Eq. (53) from x′ to x̃
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∫

(e/L)δ(x̃1

r) δ(x̃
2

r)[H(x̃3

r + L/2) −H(x̃3

r − L/2)]d3x̃r =

∫

ρr(x̃r)dx̃
3

r = (e/L)

∫ +L/2

−L/2

dx̃3

r = e. (54)

To put Eq. (54) in the form of Eq. (52), note that
∫

δ(x̃0)dx̃0 = 1, so

∫

ρr(x̃r)δ(x̃
0
r) d

4x̃r = e. We tentatively identify f(x̃r) with ρr(x̃r)δ(x̃
0
r).

The meaning attached to x̃0
r = 0 is that the clock at the charge point

x′r reads the same as the clock at xr in the rest frame. The clocks in

the rest frame are synchronized.

We now go on to show that in the moving frame, our function f

satisfies the right hand side of Eq. (52).

∫

ρr(x̃m)δ[γ(x̃0

m − β x̃3

m]d4x̃m =

∫

(e/L)δ(x̃1

m) δ(x̃2

m)

(

H[γ(x̃3

m−βx̃0

m)+L/2]−H[γ(x̃3

m−βx̃0

m)−L/2]
)

δ[γ(x̃0

m−βx̃3

m)]d4x̃m =

(e/L)

∫

[H(x̃3

m/γ + L/2) −H(x̃3

m/γ − L/2)]dx̃3

m/γ = e (55)

In the non-review papers, an element of the electron charge in the

m frame, dem, will be replaced by ρ(x̃m)δ[γ(x̃0
m − βx̃3

m)]d4x̃m.

VII. COMMENT

The presentation has been too brief. The reader is encouraged to

consult a book on contour integration in the complex plane. I have
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used Mathematical Methods for Physicists by George Arfken and Func-

tions of Complex Variables by Philip Franklin. I have also consulted

Advanced Calculus by David Widder.


