
THE DIRAC EQUATION (A REVIEW)

We will try to find the relativistic wave equation for a particle.

First, we introduce four dimensional notation for a vector by writing

xµ = (x0, x1, x2, x3) = (ct, x, y, z). The metric tensor of special rel-

ativity is ηνµ =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









. This allows us to introduce

xν = ηνµx
µ where xν = (x0, x1, x2, x3) = (x0,−x1,−x2,−x3). The

summation convention has been used; when the same index appears as

a superscript and a subscript, then that index is summed over. Thus,

xν = ην0x
0 + ην1x

1 + ην2x
2 + ην3x

3. The scalar product x · x is defined

by x · x = xνx
ν = (x0)2 − (x1)2 − (x2)2 − (x3)2 = (x0)2 − x · x.

For a free relativistic particle, E2 = p2c2 + m2c4. Using the corre-

spondence that E = i~∂/∂t = i~c∂/∂x0 and p = −i~∇ leads to

−~
2
∂2φ

∂t2
= −~

2c2
∂2φ

∂(x0)2
= −~

2c2∇2φ+m2c4φ . (1)

Substituting the plane wave solution φ ∝ exp (−ip · x/~) into Eq. (1),

yields
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E2φ = (p2c2 +m2c4)φ, (2)

and we recoverE2 = p2c2+m2c4, or E = ±
√

p2c2 +m2c4 as is required.

Eq. (1), an equation second order in all derivatives, was originally re-

jected because of the negative energy solution. Later, it was applied to

mesons.

Another attempt to find a relativistic wave equation was made by

Dirac. Observe that the Schrödinger equation is linear in the time

derivative, but of second order in the spatial derivatives. Try to find a

relativistic wave equation which is linear in all derivatives. For a free

particle, try

ic~∂φ/∂x0 = −ic~(α1∂φ/∂x1+α2∂φ/∂x2+α3∂φ/∂x3)+βmc2φ = Hφ.

(3)

where α1, α2, α3, and β are to be determined, andH is the hamiltonian.

Notice that if φ is replaced by the usual plane wave, then the coefficients

of φ after differentiation have the dimensions of energy if αi(i = 1, 2, 3)

and β are dimensionless. Apply the operator below to Eq. (3)

ic~∂/∂x0 − ic~(α1∂/∂x1 + α2∂/∂x2 + α3∂/∂x3) + βmc2, (4)
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and find

− ~
2c2

∂2φ

∂(x0)2
= −~

2c2
3

∑

i,j=1

(αjαi + αiαj)

2

∂

∂xj

∂φ

∂xi

− i~mc3
3

∑

i=1

(αiβ + βαi)
∂φ

∂xi
+ β2m2c4φ. (5)

Eq. (5) shall be required to reduce to Eq. (1). Notice that the first

term on the right hand side of Eq. (5) will contain

(α1)2
∂2φ

∂(x1)2
+ (α2)2

∂2φ

∂(x2)2
+ (α3)2

∂2φ

∂(x3)2
(6)

plus cross terms such as

(α1α2 + α2α1)
∂2φ

∂x1∂x2
. (7)

In order that Eq. (5) reduces to Eq. (1), (α1)2 = (α2)2 = (α3)2 = 1,

β2 = 1, (α1α2 + α2α1) = 0, and the other cross terms vanish including

αiβ+βαi. The cross terms can not vanish if the αi and β are numbers.

Matrices can anti-commute, so we assume they are matrices. This

means that the 1 in the equations (αi)2 = β2 = 1 is actually the unit

matrix, and ∂φ/∂x0 in Eq. (3) is multiplied by the unit matrix. In

addition, take φ to be a column matrix. This allows spin to appear in

the theory naturally.
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Suppose now that λi
j is an eigenvalue of the N by N matrix αi where

N is to be determined. Here j indicates which eigenvalue. Let χi
j be

the eigenvector associated with the eigenvalue λi
j . χ

i
j will be a 1 by N

column matrix. The eigenvalue equation takes the form αiχi
j = λi

jχ
j

j.

Apply αi to the above equation, and find

(αi)2χi
j = χi

j = αiλi
jχ

i
j = (λi

j)
2χi

j. (8)

Thus (λi
j)

2 = 1, and λi
j = ±1. It will be shown next that N is even.

Start with αiβ = −βαi, then βαiβ = −β2αi = −αi. Take the trace of

both sides, and find Trβαiβ = -Trαi. Use the trace property that

Trβαiβ =Trαiββ, and β2 = 1 to show that Trαi = −Trαi, or

Trαi = 0. The Trace of a matrix is just the sum of its eigenvalues.

Since the trace is zero, N must be even. N = 2 is ruled out because

there are not four 2 by 2 anti-commuting matrices. We proceed with

N = 4. Thus, the αi and β are four by four matrices, and φ is a one

by four column matrix.

It is convenient to multiply Eq. (3) by the matrix β. Introduce the

notation γ0 = β, and γi = βαi. Then Eq. (3) can be written

i~
(

γ0
∂

∂x0
+ γ1

∂

∂x1
+ γ2

∂

∂x2
+ γ3

∂

∂x3

)

φ−mcφ = 0 (9)
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where mcφ is multiplied by the unit matrix. We assume the plane

wave solution φ ∝ u exp (−ip · x/~) where u is the one by four col-

umn matrix









u1

u2

u3

u4









with ui to be determined. Notice that (γi)2 =

β αiβ αi = −αi β2 αi = −(αi)2 = −1 and (γ0)2 = 1. Similarly, it

can be shown that γiγj + γjγi = 0. These results can be written

γµγν + γνγµ = 2gµν where gµν =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









. The prod-

uct of a four by four matrix with a four by four matrix is a four by

four matrix, so each entry in gµν is a four by four diagonal matrix.

A possible representation for the matrices is γi =

(

0 σi

−σi 0

)

and

γ0 =

(

1 0
0 −1

)

where the σi are the Pauli matrices. Recall that

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, and σ3 =

(

1 0
0 −1

)

. As an illustration,

we now calculate γ1γ3 + γ3γ1 in the chosen representation.

γ1γ3 =

(

0 σ1

−σ1 0

) (

0 σ3

−σ3 0

)

=

(

−σ1σ3 0
0 −σ1σ3

)

. (10)

Similarly, γ3γ1 =

(

−σ3σ1 0
0 −σ3σ1

)

. Next, note that

σ1σ3 =

(

0 1
1 0

) (

1 0
0 −1

)

=

(

0 −1
1 0

)

. (11)

Similarly, σ3σ1 =

(

0 1
−1 0

)

. Finally,
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γ1γ3 + γ3γ1 =

(

−σ1σ3 − σ3σ1 0
0 −σ1σ3 − σ3σ1

)

=

(

0 0
0 0

)

. (12)

The other identities can be similarly verified.

For p = 0, the Dirac equation takes the form

(

i~γ0
∂

∂x0
−mc

)

φ = 0 (13)

where φ ∝ u exp (−ip0x0/~) and u is a 1 by 4 matrix described above.

Eq. (13) can be written

i~
∂ exp (−ip0x0/~)

∂x0









1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

















u1

u2

u3

u4









−mc exp (−ip0x0/~)









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

















u1

u2

u3

u4









= 0. (14)

Carrying out the matrix multiplication leads to

(p0−mc)u1 = 0, (p0−mc)u2 = 0, (−p0−mc)u3 = 0, (−p0−mc)u4 = 0.
(15)

One possible set of solutions is found by setting three of the ui to zero,

and setting the remaining one equal to one. Thus, the four solutions

to Eq. (13) are
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φ1 = exp(−imcx0/~)









1
0
0
0









, φ2 = exp (−imcx0/~)









0
1
0
0









φ3 = exp(+imcx0/~)









0
0
1
0









, φ4 = exp(+imcx0/~)









0
0
0
1









. (16)

Since p0 = mc for the first two solutions, we shall associate a positive

energy spin up electron with φ1, and we shall associate a positive energy

spin down electron with φ2. The two negative energy solutions will be

discussed in more detail when positrons are treated.

For p 6= 0, assume that a solution to Eq. (9) will take the form

φ ∝ u exp (−ip · x/~) . Here u =









u1

u2

u3

u4









and the four vector p is given

by pµ = (p0 = E/c, p1, p2, p3). Substitution into Eq. (9) gives the

following result:

(p0 −mc)u1 − (p1 − ip2)u4 − p3u3 = 0 (17)

(p0 −mc)u2 − (p1 + ip2)u3 + p3u4 = 0 (18)

−(p0 +mc)u3 + (p1 − ip2)u2 + p3u1 = 0 (19)

−(p0 +mc)u4 + (p1 + ip2)u1 − p3u2 = 0. (20)

For the positive energy spin up solution, set u2 = 0 and find u3 = p3u1/(p
0 +mc)

and u4 = (p1 + ip2)u1/(p
0 +mc). So
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φ1 ∝ exp (−ip · x/~)









u1

0
p3cu1/E +mc2)

(p1 + ip2)cu1/(E +mc2)









(21)

In order to agree with reference (6) in the Mott Rutherford paper, u1 is

set equal to
√

(E +mc2)/(2mc2). Write φ1(x) ∝ w1(p) exp (−ip · x/~)

where

w1(p) =
√

(E +mc2)/(2mc2)









1
0

p3c/(E +mc2)
(p1 + ip2)c/(E +mc2)









. (22)

Set w̄ = w†γ0 and notice that

w̄1w1 = (w1)†γ0w1 = (E+mc2)/(2mc2)
(

1 0 p3c/(E +mc2) (p1 − ip2)c/(E +mc2)
)









1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

















1
0

p3c/(E +mc2)
(p1 + ip2)c/(E +mc2)









= 1 . (23)

A similar calculation yields (w1)†w1 = E/mc2. Introduce the four vec-

tor k = p/~. Then φ1(x) ∝ w1(p) exp (−ik · x). The normalization that

∫

(φ1

2
)†φ1

1
d3x = δ3(k2 − k1) requires that φ1(x) =

√

mc2/(2π)3E w1(p) exp (−ik · x).

Alternatively, if box normalization is used,
∫

(φ1

2
)†φ1

1
d3x = δk2,k1

and

φ1(x) =
√

mc2/(EV )w1(p) exp (−ik · x).

For the positive energy spin down solution, set u1 = 0 and find
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φ2 ∝ exp (−ik · x)









0
u2

(p1 + ip2)cu2/(E +mc2)
−p3cu2/(E +mc2)









(24)

Set u2 equal to
√

(E +mc2)/(2mc2). Write φ2(x) ∝ w2(p) exp (−ik · x)

where

w2(p) =
√

(E +mc2)/(2mc2)









0
1

(p1 − ip2)c/(E +mc2)
−p3c/(E +mc2)









. (25)

Notice that w̄2w2 = 1, and w̄1w2 = w̄2w1 = 0. Also, (w2)†w2 =

E/mc2, and (w2)†w1 = (w1)†w2 = 0. Box normalization will re-

quire φ2(x) =
√

mc2/(EV )w2(p) exp (−ik · x). Introduce the notation

u(p, sz = +~/2) = w1(p) and u(p, sz = −~/2) = w2(p). For an arbi-

trary spin s, write φ(x) =
√

mc2/(EV )u(p, s) exp (−ik · x) where the

column matrix u(p, s) is a linear combination of w1(p) and w2(p).

This paper justifies the wave functions used in the paper on Mott-

Rutherford scattering.

In special relativity, the three-dimensional vector potential and the

potential, A0 = Φ, are combined to form a four-vectorA = (A0, A1, A2, A3).

The replacement p → −i~γµ∂/∂xµ − eγµAµ yields the Dirac equation

i~γµ ∂ψ

∂xµ
− eγµAµψ −mcψ = 0. (26)



10 THE DIRAC EQUATION (A REVIEW)

for a particle in an electro-magnetic field. This is the equation that

we will use to solve scattering problems in QED. The next two review

papers will show how this equation is used to calculate the S-matrix.


